Synergistic combination of systems for structural health monitoring and earthquake early warning for structural health prognosis and diagnosis
نویسندگان
چکیده
Earthquake early warning (EEW) systems are currently operating nationwide in Japan and are in beta-testing in California. Such a system detects an earthquake initiation using online signals from a seismic sensor network and broadcasts a warning of the predicted location and magnitude a few seconds to a minute or so before an earthquake hits a site. Such a system can be used synergistically with installed structural health monitoring (SHM) systems to enhance pre-event prognosis and post-event diagnosis of structural health. For pre-event prognosis, the EEW system information can be used to make probabilistic predictions of the anticipated damage to a structure using seismic loss estimation methodologies from performance-based earthquake engineering. These predictions can support decision-making regarding the activation of appropriate mitigation systems, such as stopping traffic from entering a bridge that has a predicted high probability of damage. Since the time between warning and arrival of the strong shaking is very short, probabilistic predictions must be rapidly calculated and the decision making automated for the mitigation actions. For post-event diagnosis, the SHM sensor data can be used in Bayesian updating of the probabilistic damage predictions with the EEW predictions as a prior. Appropriate Bayesian methods for SHM have been published. In this paper, we use pre-trained surrogate models (or emulators) based on machine learning methods to make fast damage and loss predictions that are then used in a cost-benefit decision framework for activation of a mitigation measure. A simple illustrative example of an infrastructure application is presented.
منابع مشابه
Damage detection and structural health monitoring of ST-37 plate using smart materials and signal processing by artificial neural networks
Structural health monitoring (SHM) systems operate online and test different materials using ultrasonic guided waves and piezoelectric smart materials. These systems are permanently installed on the structures and display information on the monitor screen. The user informs the engineers of the existing damage after observing signal loss which appears after damage is caused. In this paper health...
متن کاملA Pitch-Catch Based Online Structural Health Monitoring of Pressure Vessels, Considering Corrosion Formation
Structural health monitoring is a developing research field which is multifunctional and can estimate the health condition of the structure by data analyzing and also can prognosticate the structural damages. Illuminating the damages by using piezoelectric sensors is one of the most effective techniques in structural health monitoring. Pressurized equipments are very important components in pro...
متن کاملEarthquake Damage Detection in Buildings and Early Warning Based on Wave Travel Times
This paper describes a novel method for structural health monitoring of buildings, currently being developed at the University of Southern California for future applications in earthquake early warning systems. The method uses data from vibrational sensors and is based on detecting changes in travel times of waves propagating through the structure. It is an intermediate scale method, which can ...
متن کاملDesign and Development of Early Warning System for Desertification and Land Degradation
Early warning systems are key components of strategies to reduce risk. This research, by adopting a systematic approach in the management of the risk of desertification and by including previously developed models and systems, offers an integrated efficient structure in terms of early warning for the risk of desertification as a pilot system for semi-arid areas of west Golestan Province in IRAN...
متن کاملHealth Monitoring of Welded Steel Pipes by Vibration Analysis
In the present work, structure health monitoring (SHM) of welded steel pipes was used to diagnosis their state via vibration based damage detection techniques. The dynamic quantities such as Frequency Response Functions (FRFs), mode shapes and modal parameters from structural vibration to detect damage were measured, set on linear averaging mode, with a maximum frequency of analysis of 3.2 kHz....
متن کامل